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Abstract
Analytic modified embedded atom method (AMEAM) type many-body
potentials have been constructed for ten hcp metals: Be, Co, Hf, Mg, Re, Ru, Sc,
Ti, Y and Zr. The potentials are parametrized using analytic functions and fitted
to the cohesive energy, unrelaxed vacancy formation energy, five independent
second-order elastic constants and two equilibrium conditions. Hence, each
of the constructed potentials represents a stable hexagonal close-packed lattice
with a particular non-ideal c/a ratio. In order to treat the metals with negative
Cauchy pressure, a modified term has been added to the total energy. For all
the metals considered, the hcp lattice is shown to be energetically most stable
when compared with the fcc and bcc structure and the hcp lattice with ideal c/a.
The activation energy for vacancy diffusion in these metals has been calculated.
They agree well with experimental data available and those calculated by other
authors for both monovacancy and divacancy mechanisms and the most possible
diffusion paths are predicted. Stacking fault and surface energy have also been
calculated and their values are lower than typical experimental data. Finally, the
self-interstitial atom (SIA) formation energy and volume have been evaluated
for eight possible sites. This calculation suggests that the basal split or crowdion
is the most stable configuration for metals with a rather large deviation from
the ideal c/a value and the non-basal dumbbell (C or S) is the most stable
configuration for metals with c/a near ideal. The relationship between SIA
formation energy and melting temperature roughly obeys a linear relation for
most metals except Ru and Re.

1. Introduction

The application of computer simulation using empirical pair potential interactions between
atoms has been less common for hcp metals than cubic metals because of the difficulty of
obtaining suitable interatomic potentials [1, 2]. Furthermore, although the embedded atom
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potentials (EAM) proposed by Daw and Baskes [3] and many-body potentials introduced by
Finnis and Sinclair [4] (F–S) give a more realistic picture of crystal properties than can be
obtained by pair potentials, there have been few studies using these kinds of potentials for
the hcp metals (e.g. [5–9]). The most extensive sets derived to date are those of F–S type
by Igarashi et al [7] and EAM type by Baskes and Johnson [9]. The potentials proposed by
Igarashi et al for the eight metals Be, Hf, Ti, Ru, Zr, Co, Mg and Zn were fitted to several
physical parameters, including the c/a ratio, but not to any data that arise from atom–atom
interactions inside the normal equilibrium lattice spacing. This may be a rather serious problem
for interstitial modelling because the perfect crystals defined by these potentials require a much
higher hydrostatic pressure to produce a small volume decrease than is found experimentally.
In other words, the pair repulsion term is very ‘hard’ and this can be expected to lead to values
of interstitial atom formation energy that are too large. Moreover, Bacon found that some
potentials produce an unstable crystal when used to model twin boundaries [2] and this must
put their suitability for simulating point defects into question. The modified EAM potentials
proposed by Baskes and Johnson [9] with angular forces were applied to 18 hcp metals. They
studied the vacancy, divacancy, stacking fault and surface, but the divacancy was unbound in all
of the metals considered except Be. Moreover, no information was given about the application
of their model to self-interstitial atoms.

The EAM potentials proposed by Johnson et al [5, 10, 11] are short range and have the
virtue of fitting the empirical energy–volume relationship of Rose et al [12], thereby ensuring
reasonable response for atomic spacings inside the equilibrium spacing. In the first and third
papers, potentials were derived for Mg, Ti and Zr, but all with the ideal c/a ratio (1.633). In the
second paper, two ‘model’ potentials which approximately match zirconium were described,
one with c/a close to the ideal value and the other with 1.580, which is below the real ratio of
1.593. Ackland [13, 14] has developed F–S potentials for Ti and Zr by fitting to three elastic
constants and one lattice constant. These potentials also give a good description of atom–atom
interactions inside the nearest-neighbour spacing and have been employed successfully to
investigate defects, surface and displacement-threshold properties, radiation damage and twin
boundary structures. Therefore, existing interatomic many-body potentials for atomic-scale
simulation of hcp metals are only appropriate for metals such as Mg, Ti and Zr which have a
c/a lattice parameter ratio close to the ideal value and new potentials are required for further
study of a wide range of metals.

In the present study, new analytic modified EAM many-body potentials for hcp metals are
developed. We construct these potentials to reproduce exactly the observed c/a ratio and all
five elastic constants for each metal are considered. These potentials guarantee the stability
of the hexagonal structure with respect to hcp with ideal c/a, fcc and bcc crystal structures.
The formation and migration energies of the vacancy, the activation energy for self-diffusion
of monovacancy, the divacancy formation and binding energies and the activation energy for
diffusion by a divacancy mechanism are calculated and discussed. Finally, stacking fault and
surface energies and the self-interstitial atom (SIA) formation energy for eight possible sites
have been evaluated. In addition, the phonon spectra have been calculated and discussed in
another paper. A good agreement between measured and calculated phonon spectra has been
obtained for the acoustic branches and a reasonable agreement has been obtained for optical
branches for all elements studied.

2. Form and construction of the potentials

In the original EAM model, there are two assumptions [3, 15]. First, the atomic electron
densities are to be well represented by the spherically averaged free atom densities calculated
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from Hartree–Fock theory by Clementi and Roetti [16] and McClean and McClean [17].
Second, the host electron density is approximated by a linear superposition of the atomic
densities of the constituents. These assumptions are too simple and cannot describe the actual
situation well. Baskes [18] modified the EAM to include directional bonding in the expression
of electron density and applied it to silicon and recently extended it to a variety of cubic
materials [19]. Pasianot et al [20] added a new term in the form of total energy for the EAM
to represent a many-body shear term related to bond angles in a global (average) sense. Zhang
et al [21, 22] modified Johnson’s analytic EAM, in a similar way to Pasianot. They added a
modified analytic energy term M(P) to the total energy expression for the EAM to express the
difference between the actual total energy of a system of atoms and that calculated from the
original EAM using a linear superposition of spherical atomic electron densities. The model
was successful for calculating the vacancy diffusion mechanism for all bcc transition metals
[22] and the thermodynamic properties of their binary alloys [21]. A similar approach is now
developed here for hcp metals.

The physical properties fitted within this scheme are the cohesive energy, Ec, unrelaxed
vacancy formation energy, E1f , five independent second-order elastic constants and the two
lattice constants of the hexagonal structure, a and c. All these quantities are summarized in
table 1.

Table 1. Quantities used in the fitting of the potentials. Values of a and c have been taken from
Barrett and Massalski [23], values of Ec from Kittel [24] and vacancy formation energies from
Baskes and Johnson [9]. Values of elastic constants of Be and Y are from Simmon and Wang [25],
those of other elements from Brandes and Brook [26], only C33 of Be and Ru is modified for fitting
from 336.4 to 246 and from 624 to 535, respectively. a and c are in nm, Ec and E1f in eV and Cij

in GPa.

a c Ec E1f C11 C12 C44 C13 C33

Be 0.228 56 0.358 32 3.32 1.11 292.3 26.7 162.5 14 246
Co 0.249 70 0.406 90 4.39 1.35 295 159 71 111 335
Hf 0.319 46 0.505 11 6.44 1.80 181 77 55.7 66 197
Mg 0.320 94 0.521 05 1.51 0.58 59.3 25.7 16.4 21.4 61.5
Re 0.276 00 0.445 80 8.03 2.30 616 273 161 206 683
Ru 0.270 57 0.428 16 6.74 1.85 563 188 181 168 535
Sc 0.330 80 0.526 70 3.90 1.15 99.3 39.7 27.2 29.4 107
Ti 0.295 06 0.467 88 4.85 1.50 160 90 46.5 66 181
Y 0.364 74 0.573 06 4.37 1.25 77.9 28.5 24.31 21.0 76.9
Zr 0.323 12 0.514 77 6.25 1.70 144 74 33.4 67 166

The basic equation of the total energy of a system of atoms is

Et =
∑

Ei (1)

where the contribution from the atom at site i is

Ei = F(ρi) +
1

2

∑
φ(rij ) + M(Pi) (2)

For simplification, we denote equation (2) as

E = F(ρ) +
1

2

∑
m

φ(rm) + M(P) (3)

wherem represents themth-neighbour distance and the energy modification term is empirically
taken as

M(P) = α

{
1 − exp

[
−
(

ln

∣∣∣∣ PPe

∣∣∣∣
)2
]}

. (4)
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The host electron density is taken in the original form

ρ =
∑
m

f (rm) (5)

and the argument of the energy modification term P is taken as

P =
∑
m

f 2(rm)
r2
mx + r2

my + βr2
mz

r2
m

(6)

where rmx , rmy and rmz represent the component of vector rm connecting the atom m to the
atom chosen as the origin and the coordinate system is chosen such that the z-axis is parallel
to the c-axis of the hexagonal lattice and x- and y-axes are in the basal plane. If the considered
atom is not in the origin, at any coordinate (x0, y0, z0), the argument of the energy modification
term P is taken as the general form

P =
∑
m

f 2(rm)
(xm − x0)

2 + (ym − y0)
2 + β(zm − z0)

2

(xm − x0)2 + (ym − y0)2 + β(zm − z0)2
(7)

where (xm, ym, zm) is the coordinate of the surrounded atoms and rm is the distance between
the considered atom and its surrounded atom. Thus, the present potential can be applied in
the problems where the orientation of crystalline axes is physically defined. For the case of
grain or tilt boundaries, all atomic positions can be defined in a coordinate system, so the
present potential can be applied. However, the present form of the potential is not invariant
with respect to a chosen coordinate system. It should be improved in further work.

The energy modification term was first introduced to resolve the negative Cauchy pressure
problem in Johnson’s model and the argument P is presented as the sum of high orders of
electron density in order to correct the discrepancy of the linear superposition of atomic electron
density at the same time. Thus, the number of parameters in the modified term should be the
same as the number of Cauchy relations for the specific crystal. In the cubic structure, there
is only one Cauchy relation among the three elastic constants, so one parameter is enough to
describe the Cauchy discrepancy. However, there are two Cauchy relations among the five
elastic constants for an hcp crystal, so, we introduce two parameters in the modified term to
interpret this anisotropy: one is α in equation (4) and the other β in the argument P as in
equation (6). As described below, these two parameters can be determined from the equations
describing the two Cauchy relations between C11 and C12 and between C13 and C44.

The atomic density f (r) and embedding function F(ρ) take the same forms as those used
by Johnson and Oh [10]:

f (r) = fe

(
r1

r

)6

(8)

F(ρ) = −F0

[
1 − n ln

(
ρ

ρe

)](
ρ

ρe

)n

(9)

where F0 = Ec − E1f . fe is taken as unity as was done by Johnson [10]. ρe and Pe take
their equilibrium values. n is an adjustable parameter and its specific value for each element
is determined by fitting the empirical energy–volume relationship of Rose et al [12], which
ensures reasonable response for atomic spacing just inside the first-neighbour distance. To
ensure the curves of the cohesive energy dependence on the c/a ratio continuity, the cut-off
distance of atomic electron density should be larger than that of the potential. In the present
model, potentials out to the seventh-neighbour distance are considered and truncated at a
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specific cutoff distance rc = 1
4 (6a +

√
a2 + c2). Thus, the atomic density f (r) is truncated at

a specific cutoff distance

rce = 2a +
3

4

(√
13

3
a2 +

1

4
c2 − 2a

)
.

If the distance is larger than rce, we let f (r) be equal to zero.
The vacancy formation energy E1f is the energy difference between a crystal with one

vacancy lattice site and a perfect crystal containing the same number of atoms. In this
formalism, this unrelaxed vacancy formation energy can be approximately represented with
the pair potential approximation for fitting purposes [10], i.e.

E1f = −1

2

∑
m

φ(rm). (10)

The conditions of equilibrium can be expressed as a requirement that there are no stresses in
the perfect crystal. Stresses, σij , in a system of particles can be evaluated by expanding the
energy to the first order with respect to an infinitesimal homogeneous strain applied to the
system [27, 28]. In the present case this leads to

�0σij = 1

2

∑
m

rmirmj

rm
φ′(rm) (11)

where rmi is the ith component of the vector rm connecting the atom m to the atom chosen
as the origin and �0 is the equilibrium atomic volume. With the coordinate system chosen as
described above, it follows from symmetry that σxx = σyy and σxy = σxz = σyz = 0. The
equilibrium conditions which have to be satisfied for given value of a and c are then

σxx = 0 σzz = 0. (12)

The second-order elastic constants, Cijkl , can be evaluated by expanding the energy of the
system to the second order with respect to an infinitesimal homogeneous strain [27], and are
composed of two terms for the hcp lattice. One relates to the strain which is homogeneous
everywhere in the system while the second arises due to the possible relative displacements
of different sublattices when a macroscopic homogeneous strain is applied. The latter term,
named inner elastic constants, was analysed in detail by Martin [29], who has also shown
that the relaxation of sublattices contributes only to the second order and does not therefore
affect the stresses. When fitting the elastic constants, the second term is neglected as done by
Johnson [30, 10] and Igarashi et al [7]. Hence the following formulae have been used when
fitting the elastic constants:

�0Cijkl = F ′′(ρ)
∑
m

rmirmj

rm
f ′(rm)

∑
m

rmkrml

rm
f ′(rm)

+
1

2

∑
m

rmirmj rmkrml

rm

[
φ′′(rm) − φ′(rm)

rm

]

+4M ′′(P )
∑
m

rmi

r2
m

f 2(rm)

(
rmxδxj + rmyδyj + βrmzδzj − 7rmj

r2
mx + r2

my + βr2
mz

r2
m

)

×
∑
m

rmk

r2
m

f 2(rm)

(
rmxδxl + rmyδyl + βrmzδzl − 7rml

r2
mx + r2

my + βr2
mz

r2
m

)
. (13)

Hence, with the five equations for the elastic constants (including the two Cauchy relations
in them) and the two equations of equilibrium and one equation for the vacancy formation
energy, there are eight equations for fitting for an hcp crystal.
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Figure 1. Potentials for hcp metals.

The next step is to choose the effective pair potential function. In the present model, atomic
interactions out to the seventh neighbour distance are considered and φ(r) are truncated at a
specific cutoff distance rc = 1

4 (6a +
√
a2 + c2). At this point, the pair potential and its slope

are zero, i.e.

φ(rc) = 0 (14)

φ′(rc) = 0 (15)

and so two parameters should be added to the pair potential function for this cutoff procedure.
We take this potential function as

φ(r) =
j=6∑
j=−1

kj

(
r

r1

)j

(16)

and so with the three equations for the elastic constants in the pair potential scheme, the two
equations of equilibrium, the equation for the vacancy formation energy and the two equations
of the cutoff procedure, the eight model parameters kj (j = −1, 0, 1, 2, 3, 4, 5, 6) in the
potential function can be resolved analytically.

Using the data for a and c, Ec, unrelaxed vacancy formation energy E1f and C11, C12, C44,
C33 and C13 from table 1 as the input parameters, all 12 model parameters n, F0, α, β, kj can
be determined with the above equations and the Rose equation [12]. The model parameters
calculated in this way are listed in table 2.

All of the pair potentials and embedding functions for these metals are shown in figure 1
and figure 2, respectively. A distinct minimum near the nearest-neighbour distance can be
seen. The modified functions are shown in figure 3. The modification term can be positive
or negative, depending on the two Cauchy relations of elements, i.e. it is negative for metals
with negative Cauchy pressure, such as Be, Mg, Ru, Sc and Y. Thus, there is no difficulty in
describing elements with negative Cauchy pressure with the present model.
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Table 2. Parameters of the many-body potentials for hcp metals. n is dimensionless, F0, α, β and ki are in eV.

Be Co Hf Mg Re Ru Sc Ti Y Zr

n 0.98 0.58 0.32 0.75 0.48 0.58 0.70 0.48 0.60 0.53
F0 2.21 3.04 4.64 0.93 5.73 4.89 2.75 3.35 3.12 4.55
α −0.4798 0.01422 0.01656 −0.0384 0.04182 −0.2294 −0.1473 0.03005 −0.1496 0.00604
β 1.00490 −1.2182 −0.9289 3.76607 −0.9303 1.21617 1.76217 −0.9450 1.93961 −1.0284
k−1 154.410 123.185 196.078 103.569 803.604 257.768 278.060 169.887 227.685 159.684
k0 −699.29 −541.74 −897.48 −480.43 −3777.7 −1094.2 −1327.2 −806.22 −1078.0 −737.50
k1 1352.79 1009.10 1758.20 945.667 7520.87 1958.03 2692.65 1637.53 2175.94 1459.80
k2 −1457.1 −1038.2 −1918.9 −1026.4 −8243.2 −1933.9 −3011.7 −1847.0 −2429.2 −1610.1
k3 946.627 639.281 1261.61 664.156 5360.53 1150.51 2005.28 1247.62 1619.29 1068.40
k4 −371.30 −235.94 −499.29 −256.28 −2076.7 −416.33 −794.62 −503.61 −644.08 −425.73
k5 81.3505 48.3404 109.947 54.6063 443.583 85.4510 173.495 112.266 141.461 94.1193
k6 −7.6651 −4.2398 −10.371 −4.9557 −40.317 −7.6976 −16.101 −10.646 −13.228 −8.8869
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Figure 2. Embedding functions for hcp metals.
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Rose et al [12] obtained a universal equation of energy versus volume empirically for a
broad range of materials. To ensure reasonable behaviour for atom–atom interactions inside the
equilibrium spacing, this empirical relationship was fitted inside the first-neighbour distance
by adjusting parameter n. Figure 4 shows the comparison of the curve of total energy for
the present model with that from the Rose equation. Since the five elastic constants are input
parameters, the elastic constants calculated with the present model are fitted exactly, except
for C33 of Be and Ru. For these two metals, attempts to fit the potentials with the experimental
data of C33 were unsuccessful due to problems of mechanical and structural stability.

3. Tests and applications of the potentials

3.1. Mechanical and structural stability

Since the potentials constructed here are intended for use in atomistic simulations of crystal
defects, they must ensure that no unphysical structural instabilities occur, not only for small
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Figure 4. The total energies as a function of r/r1 for hcp metals. The solid curves are the results
calculated from the present model; the dashed curves are the results from the Rose equation.

but for large deformations. Furthermore, it is necessary that the potentials do not favour other
lattice structures over the hcp crystal they represent. The lattice stability is calculated here
under the assumption of constant volume, which is the same as was done by Johnson and Oh
[10] and Zhang et al [22] for the bcc metals. In table 3, the lattice stability (in eV per atom)
relative to the hcp structure with ideal c/a ratio is predicted. The structural energy difference



1202 W Hu et al

Table 3. Calculated and experimental values of lattice stabilities for hcp with ideal c/a ratio, fcc
and bcc crystal structures relative to the real hcp structure (in eV/atom).

Hcp (ideal c/a) Fcc Bcc

Present Baskes [9] Present Baskes [9] Pasianot [8] Exp. [31] Present Baskes [9] Exp. [31]

Be 0.0086 0.0077 0.0060 0.057 0.063 0.0310 0.074 0.068
Co 0.0000 0.0000 0.0062 0.005 0.007 0.0164 0.241
Hf 0.0068 0.0059 0.0068 0.053 0.039 0.100 0.0301 0.064 0.059
Mg 0.0001 0.0000 0.0022 0.004 0.0083 0.026 0.0176 0.029 0.031
Re 0.0018 0.0005 0.0050 0.031 0.110 0.1636 0.303 0.292
Ru 0.0117 0.0124 0.0003 0.114 0.125 0.0755 0.268 0.265
Sc 0.0025 0.0016 0.0010 0.023 0.0501 0.248
Ti 0.0041 0.0071 0.0094 0.033 0.023 0.060 0.0143 0.075 0.070
Y 0.0059 0.0075 0.0017 0.052 0.0440 0.300
Zr 0.0029 0.0105 0.0049 0.017 0.076 0.0179 0.061 0.076

is near zero for metals with a near-ideal c/a ratio, such as Co and Mg. It increases rapidly
with decreasing c/a ratio. These relaxation energies range up to 0.01 eV. Figure 5 shows the
relation between the structural energy difference (Ehcp, ideal c/a −Ehcp)/Ec and (1.633− c/a)
for the metals considered. The solid circles represent the present calculations and the dashed
line is the fitting result with a second-order polynomial function for these points. The squares
are the calculated results of Baskes and Johnson [9]. From this figure, it can be seen that the
structural energy difference increases nonlinearly with the difference between ideal c/a and
real c/a. This implies that the approximation of the real hcp structure to the ideal c/a hcp
structure is reasonable only for metals with a near-ideal c/a ratio. Metals with a much smaller
or larger c/a than this must be treated according to their real structures. The structural stability
of the close-packed hexagonal lattice relative to fcc and bcc is also shown in table 3. It is seen
that the fitted hcp lattice is indeed the most stable one, although the energy difference is rather
small for fcc compared with experimental data [31] and those of others [8, 9]. Agreement with
experiment [31] and Baskes’ data [9] for bcc is fair.

The mechanical stability of the hcp lattice with respect to large homogeneous expansions
and compressions (in general not pure hydrostatic) has been tested for each potential. This was
done by calculating the energy of the hcp crystal for different values of the atomic volume,
� and c/a ratio. Figure 6 shows the dependence of cohesive energy on c/a at different
values of � for Hf. It is seen that in this range of the c/a values and volume changes, no
other hcp metastable configurations exist under the constructed potential. Moreover, the c/a

ratio corresponding to the lowest energy structure increases with decreasing �, that is with
increasing compression and converges towards the ideal value, 1.633. Clearly, under high
compression the atoms tend to behave like hard spheres owing to strong repulsion. The same
results have been found for all the potentials constructed.

3.2. Surface and stacking fault energy

The defect and surface calculations were carried out using the molecular dynamics code
MOLDY [32]. They were simulated in parallelepiped blocks of up to 4860 atoms at constant
pressure with periodic boundary conditions.

In general, the dominant feature of the surface is the relaxation of the atoms so as to
optimize their effective coordination and in particular an inward relaxation of the upper layer
is predicted with many-body potentials, in contrast to the direction obtained with pair poten-
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Hf.

tials. The surface energy is ordered with crystallographic orientation as one would expect from
bond-breaking considerations, but the variation is not as great as arguments based on bond-
breaking would suggest. The surface energy has been calculated following the methodology
of Ackland [13] and the results are summarized in table 4. The calculated surface energies for
the basal and prism planes are about equal, both are less than the experiments (average surface
extrapolated to 0 K), except for the case of Be and Sc where the calculated energy is somewhat
higher. The agreement with experiment for the present calculations is worse compared with
the results of Baskes and Johnson [9] and it is close to the results for Ti [13] and Zr [14] with
F–S many-body potentials.

There has been considerable speculation over the years about the possible existence of
stacking faults in the hcp metals, particularly in relation to dislocation glide and loop-habit
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Table 4. Calculated and experimental values of surface energy (mJ m−2).

Basal plane Prism plane

Element Present Others Present Others Experimental data

Be 1273 1650 [9] 1294 795 [9] 1150 [33]
Co 1162 3056 [9] 1172 3454 [9] 2550 [34], 2160 [33]
Hf 992 2041 [9] 988 1636 [9] 2150 [34], 2190 [33]
Mg 310 900 [9] 316 1016 [9] 785 [33]
Re 1682 3940 [9] 1689 3949 [9] 3600 [34], 3630 [33]
Ru 1281 3191 [9] 1308 1994 [9] 3050 [34], 3040 [33]
Sc 706 1355 [9] 706 1295 [9] 410 [33]
Ti 1033 1962 [9], 993 [13] 1023 1673 [9], 1039 [13] 2100 [34], 1920 [33]
Y 623 1001 [9] 626 738 [9] 1125 [33]
Zr 988 2302 [9], 1022 [14] 978 2364 [9], 1230 [14] 2000 [34], 2050 [33]

planes. Possible stacking faults in hcp metals were enumerated by Bacon and Liang [35] and
stacking fault energy was calculated by them using a variety of pair potentials. There are
three possible faults on the basal plane, whose energies are loosely incorporated in the fitting
procedure via the fcc–hcp energy difference. The two intrinsic faults have one of the two
stacking sequences ABABCBCB (I1) and ABABCACA (I2), whilst the extrinsic fault has the
stacking sequence ABABCABAB (E). The most important fault is the I2 type intrinsic stacking
fault, so most of the reported values of stacking fault energy are for this. A relatively wide
dislocation splitting has been observed in Co and its stacking fault energy is estimated to be
27 mJ m−2 [36]. The only experimental estimate for Ti [37] is of the order of 300 mJ m−2.
The stacking fault energy in all hexagonal metals was calculated by Legrand using the pseudo-
potential approach for divalent elements and a tight-binding method for transition elements
[38]. These calculations suggest very high stacking fault energies for all the transition metals
as well as for Be but energies of the order of 30–40 mJ m−2 for Mg, Co and Zn.

In the framework of the many-body potentials constructed in this paper the stacking
fault energy is principally determined by the values of embedding functions and the pair
potentials for atomic separations at and beyond seventh neighbours. Using the constructed
potentials, the stacking fault energies I2, I1 and E have been calculated and are summarized
in table 5. Reasonable stacking fault energies have been obtained for Co and Mg. However,
the calculated stacking fault energies in the other metals are much lower than those reported
by others [7, 9, 14, 36–38]. Attempts to adjust the potentials so as to achieve a higher stacking
fault energy were unsuccessful due to problems of lattice stability.

3.3. Vacancy and divacancy

Using the present model, it is possible to calculate the formation and migration energies of the
vacancy, the sum of which is the activation energy for self-diffusion by the vacancy mechanism
and the divacancy. The relaxed vacancy formation energy and formation volume have been
calculated with MOLDY and are listed in table 6. (The unrelaxed vacancy formation energy
E1f (equation (6)) is shown in brackets.) The difference of the vacancy formation energy
between relaxed and unrelaxed values is small, not more than 0.05 eV. The migration energy
for a vacancy is the difference between the energy for an atom at the saddle point and that
at its equilibrium site as it moves from its crystal site to the nearest vacant site. For hcp
metals, there are two saddle points in this path, denoted as C and Bc respectively, which
correspond to the migration of an atom out of the basal plane and in the basal plane. The
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Table 5. Calculated and experimental values of the unrelaxed stacking fault energies (mJ m−2).

Element I2 I1 E I2 reported by others

Be 102 51 153 414 [9], 390 [38], 357 [7]
Co 37 18 55 30 [9], 42 [38], 27 [36], 64 [7]
Hf 45 22 67 198 [9], 390 [38], 111 [7]
Mg 8 4 12 14 [9], 30 [38], 10 [7]
Re 31 16 44 150 [9], 540 [38]
Ru 68 34 119 588 [9], 875 [38], 213 [7],397 [7]
Sc 12 6 18 78 [9]
Ti 47 24 71 144 [9], 290 [38], 300 [37],116 [7]

64 [13] 33 [13] 94 [13]
Y 21 10 31 148 [9], 210 [38]
Zr 26 13 40 62 [9], 340 [38], 27 [7]

80 [14] 41 [14] 118 [14]

present calculations for the migration energies Eout
1m and Ein

1m and then the activation energy
for self-diffusion Qout

1v = Eout
1m + E1f (out of plane) and Qin

1v = Ein
1m + E1f (in plane) are also

shown in table 6. The experimental data and the data predicted or cited are also included: they
focus on the metals with c/a ratio close to ideal, such as Co, Mg, Zr and Ti. The agreement
between the present calculations and those data from experiment or other authors is rather good
for the formation, migration and activation energies. It should be pointed out that diffusion
activation energies from [40] are calculated with the Engel–Brewer theory and do not consider
the specific diffusion path and the results are much higher than the experimental data. The
present results are better than those obtained by Johnson and Beeler [46], Liu et al [43] and
others.

It is interesting to compare the out-of-basal plane and in-basal plane self-diffusion energy.
Bacon [1, 2] reviewed these data obtained before 1993. Using different pair potentials, the
isotropic nature of vacancy migration is observed for Ti and Co and the migration in the
basal plane is preferred for Mg; however, the out-of-plane migration is preferred for Zr [1].
Another paper reported that the migration in the basal plane was slightly preferred for Zr [52].
Using the many-body potential of Ti, the migration energy of the in-plane and the out-of-plane
mechanisms is 0.80 and 0.68 eV, respectively [2]. Oh and Johnson found the activation energy
for self-diffusion in Zr to be independent of a change in the c/a ratio and the migration in
the basal plane was preferred [50]. Because the available data are limited and contradictory,
a systematic study is necessary. The present study reveals that Qin

1v is equal to or larger than
Qout

1v , so the diffusion in the non-basal plane is easier than that in the basal plane. Moreover,
our calculations indicate that the c/a ratio strongly affects the microdiffusion mechanism.
The isotropic nature of vacancy migration is observed for Mg and Co whose c/a ratio is close
to the ideal value and the migration in the out-of-plane is preferred for other metals. The
experimental data of the diffusion activation energy of Be are 1.708 and 1.631 eV/atom for
basal and non-basal plane, respectively [39]; this implies that the migration in the out-of-plane
is preferred. The present calculations are agreement with these experimental data.

Diffusion is dominated by the contribution of mono-vacancies, but the contribution of
di-vacancies may be significant at high temperature and so we have considered it with the
new potentials. The self-diffusion activation energy is the sum of the formation and migration
energies of a divacancy, but diffusion in hcp metals is different from that in fcc and bcc metals
due to the different positions of near-neighbour sites. We therefore investigate the divacancy
formation and binding energies for several possible divacancy structures and found the first-
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Table 6. Predicted and experimental monovacancy properties.

Formation
Present Experimental Data by volume (�0)
work data others

Metals Value (eV) (eV) (eV) Present Others c/a

Be E1f 1.12 (1.13) 1.11 [9] 1.23 [9] 0.97 1.568
Eout

1m 0.62
Qout

1v 1.74 (1.75) 1.631 [39]
Ein

1m 0.64
Qin

1v 1.76 (1.77) 1.708 [39] 2.420 [40]
Co E1f 1.38 (1.40) 1.35 [9] 1.41 [41], 1.48 [9] 0.78 1.630

Eout
1m 0.72 0.89 [41]

Qout
1v 2.10 (2.12) 2.301 [41]

Ein
1m 0.72 0.89 [41]

Qin
1v 2.10 (2.12) 2.30 [41]

Hf E1f 1.80 (1.82) 1.80 [9] 2.02 [9] 0.95 1.581
Eout

1m 0.90
Qout

1v 2.70 (2.72)
Ein

1m 0.98
Qin

1v 2.78 (2.80)
Mg E1f 0.59 (0.59) 0.58 [9], 0.87 [42] 0.66 [9], 0.87 [43] 0.83 1.624

Eout
1m 0.35 0.39 [43], 0.66 [42]

Qout
1v 0.94 (0.94) 1.388 [44] 1.26 [43], 1.43 [40, 45], 1.45 [42]

Ein
1m 0.35 0.40 [43], 0.59 [42]

Qin
1v 0.94 (0.94) 1.27 [43], 1.38 [42], 1.44 [45]

Re E1f 2.35 (2.36) 2.30 [9] 2.49 [9] 0.89 1.615
Eout

1m 2.25
Qout

1v 4.60 (4.61)
Ein

1m 2.29
Qin

1v 4.64 (4.65)
Ru E1f 1.87 (1.88) 1.85 [9] 2.11 [9] 0.94 1.582

Eout
1m 1.79

Qout
1 3.66 (3.67)

Ein
1m 1.87

Qin
1v 3.74 (3.75)

Sc E1f 1.14 (1.18) 1.15 [9] 1.28 [9] 0.79 1.592
Eout

1m 0.57
Qout

1v 1.71 (1.75)
Ein

1m 0.59
Qin

1v 1.73 (1.77)
Ti E1f 1.49 (1.54) 1.50 [9] 1.49 [11,46], 1.80 [9], 1.43 [13] 0.76 0.80 [13] 1.586

Eout
1m 0.56 0.82 [11], 0.68 [2], 1.28 [46]

Qout
1v 2.05 (2.10) 1.272 [47] 2.31 [11], 2.77 [46], 3.014 [40]

Ein
1m 0.61 0.67 [11], 0.80 [2], 1.28 [46]

Qin
1v 2.10 (2.15) 2.16 [11], 2.77 [46]

Y E1f 1.22 (1.27) 1.25 [9] 1.39 [9] 0.93 1.571
Eout

1m 0.55
Qout

1v 1.77 (1.82) 1.336 [48] 2.791 [40]
Ein

1m 0.59
Qin

1v 1.81 (1.86)
Zr E1f 1.70 (1.75) 1.70 [9] 1.55 [49], 1.93 [9], 1.86 [50] 0.80 0.74 [14] 1.593

Eout
1m 0.67 0.785 [50], 1.07 [49]

Qout
1v 2.37 (2.42) 2.645 [50], 2.62 [49]

Ein
1m 0.72 0.775 [50], 1.18 [49]

Qin
1v 2.42 (2.47) 1.975 [51] 2.635 [50], 2.73 [49], 3.296 [40]
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nearest neighbours (FN) and the second-nearest neighbours (SN) to be much more stable than
other configurations and so only these two need be considered. The results are listed in table 7.
(The data in brackets are unrelaxed values.) The formation energy of a divacancy in the non-
basal plane is almost the same as that in the basal plane in all metals and the relaxed values are
almost the same as the unrelaxed ones, the maximum difference being only 0.03 eV. Results
calculated by other authors are also included in this table. The model proposed by Baskes and
Johnson [9] can only predict the binding of divacancy for Be, because it is negative for other
metals. Comparing the results of other authors with those obtained here, it can be seen that
they are somewhat different in magnitude, but all give positive binding energy, which indicates
that these configurations are stable.

Table 7. Calculated divacancy formation and binding energies (in eV/atom).

FN (out of plane) SN (in plane)

Formation Binding Formation Formation Binding Formation
energy energy volume energy energy volume

Metals (eV) (eV) (�0) (eV) (eV) (�0)

Be 2.11 (2.13) 0.13 (0.13) 1.99 2.09 (2.12) 0.15 (0.15) 1.98
0.21 [9] 0.17 [9]

Co 2.56 (2.59) 0.20 (0.20) 1.57 2.57 (2.61) 0.19 (0.19) 1.59
0.400 [41] 0.440 [41]

Hf 3.35 (3.41) 0.24 (0.24) 1.90 3.35 (3.41) 0.24 (0.24) 1.90
Mg 1.10 (1.11) 0.08 (0.08) 1.66 1.09 (1.10) 0.09 (0.09) 1.67

0.131 [1] 0.133 [1]
Re 4.38 (4.40) 0.32 (0.32) 1.79 4.40 (4.42) 0.32 (0.31) 1.80
Ru 3.46 (3.48) 0.28 (0.29) 1.90 3.45 (3.48) 0.29 (0.28) 1.88
Sc 2.17 (2.25) 0.11 (0.11) 1.60 2.15 (2.24) 0.13 (0.12) 1.60
Ti 2.78 (2.89) 0.20 (0.19) 1.47 2.79 (2.90) 0.20 (0.18) 1.51

2.58 [39] 0.40 [46] 2.36 [39] 0.62 [46]
2.76 [11] 0.22 [11] 2.76 [11] 0.22 [11]

Y 2.32 (2.43) 0.12 (0.12) 1.86 2.29 (2.42) 0.15 (0.13) 1.86
Zr 3.18 (3.29) 0.21 (0.21) 1.60 3.18 (3.29) 0.22 (0.21) 1.60

0.236 [50] 0.248 [50]
0.08 [52] 0.10 [52]

For the migration of a divacancy in hcp metals, two configurations (FN and SN) should
be considered. Figure 7 shows the possible diffusion paths in these configurations. The
results are shown in table 8. It can be seen that the difference of diffusion activation energies
between these configurations is not large and the divacancy migration energy depends slightly
on the migration path. The smallest migration energy for FN is almost the same as for SN.
In the case of FN, j1 and j2 paths may be the most probable diffusion path due to the lowest
activation energies. After migration of atoms along the j1 path, the divacancy retains the
FN configuration, so continuous migration can proceed. After migration of atoms along the
j1 path, the divacancy retains the FN configuration, so continuous migration can proceed.
After migration of atoms along the j2 path, the divacancy transfers to the SN configuration,
so continuous migration can proceed with FN or SN configuration. In the case of SN, the
j1 and j2 paths are the most probable and after migration of an atom along the j2 path, the
configuration of the SN divacancy is retained; in a similar way, after migration of an atom
along the j1 path, the configuration of the SN divacancy transfers to FN. There is little in the
literature about the diffusion of the divacancy in hcp metals. Johnson [11, 46] studied it for Ti
and Mikhin et al studied it for Zr [52]: their data are in agreement with our results.
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Table 8. Divacancy migration and diffusion activation energies (in eV/atom).

Be Co Hf Mg Re Ru Sc Ti Y Zr

EFN
j1 0.60 0.59 0.75 0.29 1.83 1.63 0.45 0.43 0.44 0.54

EFN
j2 0.61 0.61 0.74 0.30 1.86 1.63 0.45 0.43 0.43 0.53

EFN
j3 0.70 0.79 1.07 0.37 2.39 2.00 0.63 0.68 0.63 0.80

EFN
j4 0.64 0.77 0.96 0.37 2.29 1.81 0.61 0.62 0.59 0.74

EFN
j5 0.64 0.75 1.02 0.36 2.31 1.83 0.63 0.66 0.59 0.77

EFN
j6 0.61 0.73 0.92 0.36 2.26 1.75 0.60 0.58 0.58 0.70

QFN
2v min. 2.71 3.15 4.09 1.39 6.21 5.09 2.62 3.21 2.75 3.71

max. 2.81 3.35 4.42 1.47 6.77 5.46 2.80 3.46 2.95 3.98
3.15 [40] 3.12 [52]
3.40 [17] 3.74 [52]

ESN
j1 0.62 0.59 0.75 0.29 1.82 1.64 0.45 0.43 0.45 0.53

ESN
j2 0.62 0.58 0.81 0.28 1.88 1.71 0.47 0.46 0.47 0.58

ESN
j3 0.67 0.80 0.99 0.38 2.35 1.91 0.60 0.62 0.59 0.75

ESN
j4 0.62 0.75 0.94 0.37 2.27 1.75 0.60 0.60 0.58 0.72

ESN
j5 0.63 0.75 1.01 0.36 2.31 1.82 0.63 0.66 0.62 0.77

ESN
j6 0.63 0.72 0.99 0.35 2.30 1.84 0.61 0.63 0.61 0.74

QSN
2v min. 2.71 3.15 4.10 1.37 6.22 5.09 2.60 3.22 2.74 3.71

max. 2.76 3.37 4.36 1.47 6.65 5.36 2.78 3.45 2.91 3.95
2.88 [40] 3.44 [52]
3.28 [17]

j2

j4

j6

j1

j5

j3

j1

j2

j3

j4

j5

j6

(a) (b)

Figure 7. The divacancy diffusion mechanism for hcp metals with c/a less than ideal: (a) FN;
(b) SN.

3.4. Self-interstitial atoms

Self-interstitial atom (SIA) formation energy and volume have been calculated for eight sites
that have been suggested as possible interstitial positions [46]. An O site is centred in an
octahedron, a T site in a tetrahedron, a C site (crowdion) is midway between two out-of-plane
nearest neighbours and an S site is a split (dumbbell) configuration normal to the basal plane.
Similarly, for interstitials in the basal plane, a BO site is below an O site, a BT site is below a
T site, a BC site is a crowdion midway between two in-plane nearest neighbours and a BS site
is a split (dumbbell) configuration in the basal plane.
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The formation energy and volume are listed in table 9, where the initial site and relaxed
configuration are also shown. Note that several configurations are unstable and transform to a
stable one. There is only one stable interstitial position (Bs) for Be, all other SIAs transform
to Bs after relaxation. For the SIAs in the basal plane, Bt transforms to Bs or Bc. Bo is stable
for Co, Hf, Mg, Ru, Ti, Y and Zr; it transforms to Bc for Re and Sc. Bc is stable for all metals
except Be. Bs is stable for all metals. The SIAs in the non-basal plane are general stable for
all metals except Be, but O transforms to Bc for Hf, O transforms to Bo and T to Bs for Ru
and T transforms to Bc for Sc. The most stable SIA is Bs for Be and Ru, is Bs or Bc for Hf,
Sc, Y and Zr and is non-basal dumbbell for other metals. Thus, the basal split or crowdion
is the most stable configuration for metals with a rather large deviation from the ideal c/a

value and the non-basal dumbbell (C or S) is the most stable configuration for metals with
c/a near ideal. However, Igarashi et al [7] reported that the pyramidal plane crowdion was
most stable for all eight metals (Be, Hf, Ti, Ru, Zr, Co, Mg, Zn) and Bacon [2] gave a general
preference for the basal octahedral site with pair potential calculations for Co, Ti and Zr, which
is somewhat in contrast with the present work. These results are in agreement with those of
Johnson [5, 11, 46] for Ti and Ackland et al [14] for Zr. As pointed out by Ackland [13],
the non-ideal c/a ratio is important in stabilizing the basal crowdion, since the basal ‘nearest
neighbours’ are slightly farther apart than those in adjacent planes. Moreover, the c/a ratio
affects the relaxed configuration of SIA greatly.

Different potentials have yielded different results for SIA formation energy. The dominant
effects in determining formation energy are the repulsion (which determines how much the
surrounding atoms are pushed away) and the elastic constants, which describe how the energy
of the strain field around the interstitial is taken up. Bacon [1] reviewed the simulation results
for SIA of hcp metals published until 1993. He found the formation energy was predicted to
lie in the range ∼14–36kTm, where k is Boltzmann’s constant and Tm is melting temperature.
Moreover, he suggested that the reasonable value of formation energy of SIA should fall in the
range of 18–25kTm from the calculations with the pair and many-body potentials. The lowest
formation energy of SIA for these metals is plotted against kTm in figure 8. The formation
energy increases linearly as melting temperature increases for most metals except Ru and Re.
This gives a rough relationship between SIA formation energy and kTm, i.e. Eif = 19kTm.
Because the present potentials give a good description of all five elastic constants and the
appropriate energy–volume relationship for small volume changes, the present values of SIA
formation energy should be reasonable. They are in fair agreement with that of Ackland for
Ti [13] and Ackland et al [14] for Zr. It should be noted that, while the absolute value of the
interstitial formation energy is very sensitive to the hardness of the potential core, the relative
energies depend more on the crystal structure and elastic constants. Hence the large discrepancy
between the current values and those obtained with the similar potentials of Igarashi et al [7]
(hard core) and Oh and Johnson [5] (large C66) can be explained.

The potentials presented here have a long range and are of an equilibrium nature, in contrast
with the short-range F–S potentials which have been widely employed to simulate defect
properties in metals. The long-range potentials have certainly some advantages in representing
certain properties of metals in comparison with short-range potentials. Osetsky et al [53]
employed a long-range pair interatomic potential (LRPP) and a short-range potential (MBP)
of Finnis–Sinclair type to simulate the structure and properties of vacancy loops and stacking-
fault tetrahedral (SFT) in copper. The results show that the short-range equilibrium potential is
not favourable for planar vacancy platelet to collapse into either loops or tetrahedra. It seems
that the collapsed structures (tetrahedra) are stable with the MBPs, but the potentials cannot
provide a relaxation path to them. A similar qualitative result was obtained by Shimomura
et al [54] using an equilibrium EAM potential with a range up to the third-nearest neighbour.
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Table 9. Calculated formation energies and volumes for self-interstitial atom at different positions.

Formation energy (eV) Formation volume (�0)
Initial Relaxed

Elements site configuration Present Others Present Others

Be C Bs 2.96 10.5 [7] 0.90
BO Bs 2.96 11.63 [7] 0.90
BC Bs 2.96 11.51 [7] 0.90
BT Bs 2.96 11.60 [7] 0.90
BS Bs 2.96 0.90
O Bs 2.96 11.51 [7] 0.90
S Bs 2.96 11.66 [7] 0.90
T Bs 2.96 11.67 [7] 0.90

Co C Dumb 3.48 23.9 [7] 0.78
BS Bs 3.54 0.75
S Dumb 3.53 25.03 [7] 0.77
BC BC 3.48 24.97 [7] 0.78
BT BC 3.48 25.14 [7] 0.78
O Dumb 3.48 24.93 [7] 0.78
T Dumb 3.48 25.08 [7] 0.78
BO BO 3.62 25.01 [7] 0.72

Hf C Dumb 4.73 9.5 [7] 0.68
BC BC 4.64 10.52 [7] 0.59
BS Bs 4.64 0.59
O BC 4.64 10.52 [7] 0.59
S Dumb 5.18 10.67 [7] 0.75
T Dumb 4.73 10.67 [7] 0.68
BO BO 4.72 10.64 [7] 0.59
BT Bs 4.64 10.63 [7] 0.59

Mg C Dumb 1.76 2.02 [5], 7.1 [7] 1.16
BS Bs 1.80 1.10
O Dumb 1.76 2.08 [5], 8.12 [7] 1.16
S Dumb 1.76 2.19 [5], 8.24 [7] 1.16
BC BC 1.80 8.16 [7] 1.08
BT Bs 1.80 8.30 [7] 1.10
T Dumb 1.76 8.30 [7] 1.16
BO BO 1.86 2.12 [5], 8.27 [7] 1.06

Re C Dumb 11.90 1.45
BS Bs 11.98 1.37
BC BC 11.99 1.38
BT BC 11.99 1.38
S Dumb 11.90 1.45
T Dumb 11.90 1.45
BO Bc 11.98 1.38
O Dumb 11.90 1.45

Ru C Dumb 9.06 27.3 [7] 0.73
BS Bs 8.70 0.63
O Bo 8.79 28.31 [7] 0.60
S Dumb 9.02 28.45 [7] 0.73
BC BC 8.71 28.34 [7] 0.64
BT Bs 8.70 28.46 [7] 0.63
T Bs 8.70 28.45 [7] 0.63
BO BO 8.79 28.45 [7] 0.60

Sc C Dumb 3.31 1.28
BS Bs 3.29 1.19
S Dumb 3.31 1.28
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Table 9. (Continued)

Formation energy (eV) Formation volume (�0)
Initial Relaxed

Elements site configuration Present Others Present Others

BC BC 3.29 1.19
BO BC 3.29 1.19
BT BC 3.29 1.19
T Dumb 3.31 1.28
O Dumb 3.31 1.28

Ti C Dumb 2.92 3.82 [11], 3.76 [5], 3.07 [13], 7.7 [7] 0.76 1.18 [11], 0.96 [13]
BS Bs 2.95 3.85 [11] 0.60 1.50 [11]
BC BC 2.96 3.70 [11], 8.75 [7] 0.60 1.25 [11]
BT BC 2.96 3.45 [11], 8.87 [7] 0.60 1.11 [11]
O Dumb 2.92 3.45 [11], 3.86 [5], 8.77 [7] 0.76 1.23 [11]
T Dumb 2.92 3.39 [11], 8.86 [7] 0.76 1.36 [11]
BO BO 3.07 3.33 [11], 3.79 [5], 8.88 [7] 0.60 1.18 [11]
S Dumb 3.15 4.05 [11], 4.04 [5], 8.86 [7] 0.78 1.26 [11]

Y C Dumb 3.28 0.97
BS Bs 3.23 0.88
S Dumb 3.28 0.98
BC BC 3.23 0.85
BT Bs 3.23 0.88
T Dumb 3.23 0.85
BO BO 3.36 0.92
O Dumb 3.32 1.04

Zr C Dumb 3.60 4.52 [5], 3.65 [52], 3.979 [14], 7.7 [7] 0.69 0.27 [14]
BS Bs 3.51 3.49 [52], 3.760 [14] 0.60 0.35 [14]
BO BO 3.58 3.46 [52], 3.970 [14], 8.90 [7] 0.61 0.30 [14]
BC BC 3.52 3.756 [14], 8.75 [7] 0.60 0.33 [14]
BT Bs 3.51 8.84 [7] 0.60
O Dumb 3.57 8.68 [7] 0.67
S Dumb 3.57 3.85 [52], 4.319 [14], 8.83 [7] 0.67 0.20 [14]
T Dumb 3.57 8.88 [7] 0.67

They found that a vacancy cluster was relaxed close to a SFT, but a clear picture of a SFT
was not presented. It would be of interest to use the present potentials to study defect clusters
in hcp metals, particularly for vacancy clusters and to compare with those obtained by the
short-range many-body potentials.

4. Conclusions

In this paper we have constructed EAM-type many-body potentials for ten hexagonal close-
packed metals. These potentials reproduce for each metal considered the experimentally
observed equilibrium density, c/a ratio, cohesive energy, five independent second-order
elastic constants and, approximately, the vacancy formation energy. A modification term
is introduced for describing metals with negative Cauchy pressure. To ensure the applicability
of the potentials in the modelling of extended lattice defects, the mechanical stability of the
corresponding hcp lattice with respect to large changes of density and c/a ratio was examined.
At the same time the structural stability of the real hexagonal close-packed lattice relative to
fcc, bcc and simple hexagonal structures was also tested. These tests all show that the fitted
hcp lattice are the most stable structures. Four applications of the potentials, which at the
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Figure 8. Relation between self-interstitial atom formation energy and melting temperature.

same time also represent tests, have been presented here. They are calculations of stacking
fault energy, surface energy and study of possible vacancy and interstitial configurations. The
calculated surface energies are reasonable, but the calculated stacking fault energies for most of
elements are rather low. The activation energies for self-diffusion by mono-vacancies and di-
vacancies are calculated and these results agree well with experimental data available and those
calculated by other authors. Furthermore, the most favourable diffusion paths are predicted.
Finally, the self-interstitial atom has several stable configurations. In general, the Bs or Bc is
the most stable configuration for metals with a rather large deviation from the ideal c/a value
and the non-basal dumbbell (C or S) is the most stable configuration for metals with c/a near
ideal. The SIA formation energy is roughly proportion to the melting temperature for most
metals except Ru and Re and it gives Eif = 19kTm.
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